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Computer-aided means are presented for constructing entire families of solutions to
Young and Laplace’s nonlinear partial differential equation of capillarity, with the
enclosed volume prescribed, and of determining the stability of the solutions and bifur-
cations between families having different three-dimensional symmetry properties;
equivalently, these are means for surveying the topography of corresponding energy
surfaces in especially convenient finite-dimensional function spaces spanned by so-
called finite element bases in which both the solutions and variations of them are repre-
sented. The means are a finite element algorithm employing Newton iteration and, for
the stability and bifurcation eigenproblem, a block-Lanczos method.

The algorithm is applied to gyrostatic liquid drops of fixed volume held captive be-
tween two co-rotating, parallel, concentric faces or contact circles and acted on by
surface tension and centrifugal force. The results for the special case of captive cylindri-
cal drops compare well with published and new results of conventional stability and
bifurcation analysis. Axisymmetric drop shapes that evolve from rest shapes of constant
mean curvature are found to form a one-parameter family in rotational Bond number
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52 R.A.BROWN AND L. E.SCRIVEN

X = Q2R3Ap/80. Bifurcating axisymmetric and three-dimensional families are calcu-
lated. The limit of stability is found to lie in the family of simplest axisymmetric drops,
except in the case of very fat ones, which exchange stability with C-shaped drops, a
remarkable fact.

Implications for the experiments of Plateau, Carruthers & Grasso, and others are
discussed.

1. INTRODUCTION

Young (1805) and Laplace (1805) pioneered the analysis of equilibrium shapes of menisci — fluid
interfaces with surface tension — between pairs of immiscible fluids. Most of the theory has been
directed toward integration of the differential equation of shapes of menisci, the well-known
Young-Laplace equation. Solutions are candidate equilibrium shapes, but whether or not they
are physically realizable is a more difficult issue of stability, which is not as well studied.

The forces in and on an interface between static fluids or between rigidly rotating fluids are
conservative. Consequently, a potential energy of such a system can be defined and the Young-
Laplace equation is the Euler-Lagrange condition for an extremum of that potential, besides
being a statement of the local balance of forces on theinterface. Theforce and energy formulations
are of course fully equivalent, but for present purposes the latter is convenient because it leads to
the mathematical machinery of the calculus of variations for studying both the equilibrium
meniscus shapes and their stability. This is an old approach (Rayleigh 1879; Howe 1887) butso
so far as we know has been implemented only for translationally symmetric and rotationally
symmetric menisci (see, for example, Gillette & Dyson 1971; Huh 1969; Pitts 1973, 1974, 1976,
Majumdar & Michael 1976; Coriell et al. 1977). For such menisci the Young-Laplace equation
reduces to a nonlinear ordinary differential equation, solutions of which are only rarely simple
combinations of tabulated functions. Generally, the equation must be integrated numerically for
meniscus shape.

This is true of sessile and pendent drop shapes. Nevertheless Pitts (1974, 1975) and others
(Majumdar & Michael 1976; Michael & Williams 1976, 1977) obtained, by energy methods,
mathematical expressions in closed form for the condition of neutral stability of translationally
symmetric and of rotationally symmetric sessile and pendent drops. It appears, however, that
these methods do not, or at least do not easily, extend to three-dimensional menisci.

In this paper we describe a computer-aided means of constructing solutions to the full Young-
Laplace equation and to similar nonlinear partial differential equations, and simultaneously
determining the stability of the solutions so constructed. The stability determined is with respect
to all small disturbances that can be represented in the same finite-dimensional function basis from
which the solution is built. The solution satisfies the Young~Laplace equation only in the Galerkin
sense (Finlayson 1972) and thus is approximate, strictly speaking, although it can in principle be
refined as desired, save for the practical limitation imposed by computational cost. The frame-
work we use is the subdomain scheme known as the finite element method, in which approxi-
mations to solutions are built out of many low-order polynomials, each of which is non-zero only
in a small subdomain of the entire problem domain. On this framework we develop an essentially
numerical algorithm for calculating equilibrium shapes and stability of three-dimensional
menisci. The algorithm is presented in § 5. Earlier, we applied finite element analysis to the calcu-
lations of equilibrium interface shapes without regard to their stability (Orr ef al. 1975; Brown
et al. 1980; Brown 1979).
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CAPTIVE ROTATING DROPS 53

In a progression of meniscus shapes, the occurrence of neutral stability corresponds to a point
of bifurcation where two or more equilibrium shape families join, as Majumdar & Michael (1976;
see also Michael & Williams 1976, 1977) point out in connection with the energy approach to
stability. Generally, the complete representation of a meniscus shape requires an infinite-dimen-
sional, complete function basis, and thus the space in which to picture fully the potential energy
surface of a meniscus system is infinite-dimensional. In figure 1 such a space is, in effect, projected

valley of stable ridges of unstable
& interface shapes interface shapes

trail of unstable

1\ v points of bifurcation
z Y of shape families

Ficure 1. Potential energy & in a region of bifurcation points between families of equilibrium interface shapes.
Shown is a projection of the multidimensional potential energy surface onto a single, key basis function %
together with a single parameter X representing a ratio of forces at the interface.

into a three-dimensional subspace consisting of potential energy &, a parameter 2 (which in the
next section is identified as the rotational Bond number of rotating drops), and the coefficient of a
single, key basis function. In figure 1, then, a local minimum in the energy surface where it is cut
by a plane of constant X corresponds to a stable equilibrium shape, whereas other local extrema in
the same intersection correspond to unstable equilibrium shapes. A shape family is a sequence of
shapes that is continuous in the parameter X. A stable family is represented by a valley-line; an
unstable family, by a ridge-line. When a shape is neutrally stable there are certain infinitesimal
perturbations of it that leave the energy of the system unchanged to second order. If these per-
turbations can be expressed in terms of the single basis function of figure 1, then neutral stability
(ordinarily) corresponds to a point where a valley-line meets a ridge-line. Such a point is a bifur-
cation point. Thompson & Hunt (1973, 1975) detail the bifurcations topologically possible for
conservative systems with potential energy defined by a finite number of coordinates or, as is
done here, accurately approximated in a finite-dimensional basis.

7-2
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54 R.A.BROWN AND L. E. SCRIVEN

Our numerical algorithm exploits the connection between neutral stability and solution
branching to locate bifurcation points by finite element analysis. Moreover, the shape pertur-
bation that causes neutral stability is determined and used to calculate nearby shapes in the bifur-
cating shape family. Thus identified, this shape family can be tracked across the energy landscape
until it in turn bifurcates, or simply terminates, or merely becomes uninteresting. In this way we
can trace out the entire family tree of equilibrium drop shapes, stable and unstable, which, with
respect to a parameter X, evolve continuously from one known equilibrium drop shape. This
approach also yields family trees of solutions of other nonlinear partial differential equations,
and so should find applications outside the subject of capillarity to which this paper is addressed.

(a) (b)
/\
NS Q
\.——
S 0

FIGURE 2. A rotating captive liquid drop (2) of volume ¥~ with its dimensions (4).

The problem solved here is representative: the shape and stability of a rigidly rotating liquid
drop held captive, in the absence of gravity, between two parallel, circular, solid faces co-rotating
about their common axis as shown in figure 2. This problem is practically important because of
its relation to the float-zone process for refining molten materials and producing single crystals
(Carruthers 1975 ; Carruthers & Grasso 19724, b; Coriell et al. 1977). In the absence of gravity, a
perfectly cylindrical captive drop, or liquid column, of the same radius as the solid faces is an
equilibrium drop configuration, though its stability is another matter. The stability of cylindrical
captive drops with respect to axisymmetric and to certain non-axisymmetric shapes was analysed
by Hardy & Coriell (1974), and Fowle et al. (1976) also conducted experiments to elucidate the
instabilities of rotating cylindrical drops, but their results differed and led to conflicting inter-
pretations. These are discussed in §7 in the light of the theoretical results found with the new
algorithm.

Basic elements of the algorithm can be illustrated with the perfectly cylindrical captive drop.
The stability and bifurcation of this special shape family are tractable by conventional techniques,
the results of which are summarized in § 4 and used to test the algorithm before it is applied to more
general cases in §5.

Throughout this paper the Earth’s gravitational potential is considered to be either absent or
insignificant in its effect. Although this may be justified for sufficiently small drops of great enough
surface tension, the shape and stability of centimetre-size drops with moderate surface tension is
influenced by gravity. Gravity in any amount in an axial direction disrupts the reflective sym-
metry of drops about their equatorial planes, No doubt the topography of the energy surfaces of
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CAPTIVE ROTATING DROPS 55

equilibrium solutions is altered in amounts characterized by the gravitational Bond number,
G = gR*Ap/o, though these matters are not considered here. Coriell ef al. (197%7) and Coriell &
Cordes (1977) computed the shapes of axisymmetric captive drops influenced by gravity and
determined the stability of these shapes with respect to both axisymmetric and asymmetric shape
perturbations. Their algorithm is based on Huh’s (1969) shooting method for calculating shape
and stability of axisymmetric menisci and cannot easily be generalized to study truly three-
dimensional interfaces.

2. GYROSTATIC EQUILIBRIUM DROP SHAPE

Consider a drop of volume ¥~ trapped in the gap of length 258 between two coaxial solid faces
of radius R, both of which are rotating at angular velocity 2. The liquid completely wets the two
faces and the meniscus joins the edge of each face: thus the meniscus terminates in circular contact
lines of radius R at which a wide range of contact angles is admitted here even though there may
be certain bounds on contact angle in reality. The surrounding fluid exerts uniform pressure and
negligible viscous drag on the rotating liquid.

In cylindrical polar coordinates the shape of the drop is conveniently # = f(2, ). Any radial
function f(2,6) describes an equilibrium shape if (1) it gives an extremum in Helmholtz’s
‘effective potential,’

n (B
&= [ Uy 4278475 - 4ap@ 4 az e, (2.1
0J —
(2) it enclosed the prescribed volume ¥,
~ n (*B
¥ = 1f f f2dzd6, (2.2)
2Jo) -5
and (3) it satisfies the wetting conditions,
F(-B,o)y=f(B,0) =R, 0<6<n (2.3)

In (2.1) o is the surface tension and Ap is the density difference between the rotating liquid and
the surrounding fluid. The drop shape is presumed to have a plane of reflective symmetry that
passes through the axis of rotation. One sheet of this plane is taken as the datum 6 = 0; thus

Fo(2,0) = fo(z,n) =0, —-B<z<B. (2.4)
Itis convenient to use the radius £ as the length scale and to employ dimensionless variables:
z=z/R, f=J/&, (2.5)
n B
& =EloRe =f f (LS for So) — 2] dz d6, (2.6)
oJ-B
~ 1~ (B
¥ =7 =1 f f f2dzdo, (2.7)
2JolB

where #(f, f5, f,) — henceforth abbreviated as.# —is defined in terms of the dimensionless element

of surface area: Aot = dzd0 = J(f2+ 32 +13) dzdo. (2.8)

The dimensionless measure of the square of angular velocity is known as the rotational Bond

number 2 > = R3Q2Ap/So. (2.9)
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56 R.A.BROWN AND L. E.SCRIVEN

Positive values correspond to drops of more dense liquid rotating in contact with less dense outer
fluid; negative values correspond to the converse, i.e. captive rotating bubbles. In dimensionless
form the boundary conditions (2.4) and (2.5) are

F(=B,0)=f(B,O) =1, 0<0<m)
fo(20) =fo(zm) =0, —B<z<B)

Gyrostatic equilibrium shapes of a captive drop of volume #” are given by those functions f that
cause the first variation of the augmented effective potential to vanish:

(2.10)

n B
JfEéa—-KV=f0f_3(y—2f4—Kf2)dzd6, (2.11)

where K is the Lagrange multiplier introduced with the volume constraint (2.7). The first
variation with respect to all shapes that satisfy the wetting condition is

n B
Y% =j j (S S+ L= 43f ¥~ 2Kfi) d
0 pa—

(" (B (f1+SLa oA oM s, _
_fo.f—ﬂ{ J(f2+f2jfg+fg)0 42f 2Kfv)}dzd6 0, (2.12)

where 7(z, 0) is the variation of the equilibrium drop shape f(z, 8). This is equivalent to the
Euler-Lagrange equation (Courant & Hilbert 1953, p. 183)

N
a5y ok = YoloJout (F24S 5}){{?11 (;g-:-%fﬁ;f (L+/3+ 23/ (2.13)

This is precisely the Young-Laplace equation for meniscus shape. The quasi-linear differential
operator on the right is the local mean curvature. The left-hand side is the (dimensionless)
pressure difference across the meniscus. K is related to the datum difference Ap, which would
occur at the axis of rotation if the meniscus reached the axis:

K = RAp,/20, (2.14)

and 4Zf? is proportional to the additional difference caused at # = f by the rigid rotation. The
product —K7" in the augmented effective potential # represents the pressure energy of the
liquid in the drop.

3. STABILITY AND SHAPE BIFURCATION

Gyrostatic equilibrium at a prescribed angular velocity of rotation is stable if the effective
potential #( f; X, #”) is alocal minimum with respect to all admissible infinitesimal perturbations
of drop shape, as has long been known (cf. Lamb 1932; Lyttleton 1953). Here the admissible
perturbations are those that preserve the volume of the drop and leave the wetting lines fixed
on the edges of the faces. If the perturbations are (z, ), the condition for a minimum is that the
second variation of ## about the equilibrium shape f(z, 0) be positive:

n (B
OH = fo f-—b' (°Syff 772 + 2'5pff977170 + 2'5,})‘2 7+ 2yzf0 KK
+ L Me+ Sy 1, Mo — 1217 = 2K9*) dzd6 > 0, (3.1)
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CAPTIVE ROTATING DROPS 57
while the constraints on %(z, 0) are
n *B
(s =[[[” 100 dzan -0, (32)
0J -5
#(~B,0) =5(B,0) =0, 0<0<m. (3.3)

These equations suggest that all directions around an equilibrium point on the potential energy
surface indicated in figure 1 must be searched to find out if the point is a minimum. In fact it is
necessary to check only in the principal directions of the surface, 7;(z, 0), for the signs of the second
derivatives A;. Inequality (3.1) can be rearranged into a minimization problem,

2 .
D= min PELTEY)
7:(, 0) (N> M)
over all perturbations that satisfy the requirements
<77i>f> = 0> <77i, 773) = Os J < i) (35)

where brackets denote the inner product

, (3.4)

(o> = f 0 f fBg(z, 0) h(z, 0) dz do. (3.6)

The potential energy surface is locally concave toward higher energy and the equilibrium drop
shape is stable if and only if all of the energy eigenvalues at the equilibrium point are positive, i.e.

stability: A, >0, i=1,2,.... (3.7)

Neutral stability is defined as the case in which one of the eigenvalues first reaches zero, in other
words, when along a shape family the potential energy surface develops a flat point.

The Rayleigh quotient formulation (3.4) is fully equivalent to the following eigenproblem,
which is more useful for the analytical purposes in §4:

7(z,0) SL( )-—8xf? =217 [4(z,0) 7(z,0)
& = n B =A , (3.8)
8 f f Fz0)( )dzdo  o|| g 0
0J -8B

where the linear differential operator is defined by
1 0
Z (1) =7 [y}fﬂ + 51,0+ T Mo — 3, (10 1+ L1 M0+ L5,1.712)

0 n(d 0
—@(’Sﬁ‘fo""l"spfzfo”z""yfofon) +j(&'5pfo+@£pfo_'y})J (3'9)

and the eigenfunctions 7(z, 0) satisfy (3.3). £ is a Lagrange multiplier introduced to satisfy the
volume constraint (3.2). The eigenfunction(s) belonging to a vanishing eigenvalue gives the
direction(s) in which the potential energy surface is flat (to second order). Now we show that in
this direction a second shape family branches off, or bifurcates, from the first at the flat point of
neutral stability, as indicated in figure 1. The stability of both families beyond their bifurcation
depends on the local topography of the energy surface.

Direction on the energy surface is a matter of the shape and in particular of the symmetry of
captive drops of a given family. To find the unknown shape family bifurcating from a known
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58 R.A.BROWN AND L.E.SCRIVEN

family (f©(z,0), K©®) at a point of neutral stability we employ the power-series method (Mill-
man & Keller 196g) to write the neighbouring shapes of the new family as a one-parameter

perturbation class:
F(z,05€) = fO(z,0) +€flz, 6; e),l (5.10)
K(€) = KO +eK(e). J '

The parameter ¢ is a measure of the departure of a new shape from the neutrally stable shape of
the known family, and is defined shortly. The perturbed shape and curvature, f and K, respec-
tively, must obey the Young-Laplace equation (2.13), as do also f©® and K ©@; hence the shape
perturbation function fand curvature perturbation parameter K must satisfy

0

1 0 d 1 d o
] [*%‘a*z%-sa%]m@ = 8eZfOf +46%* + 2¢K, (3.11)

?[‘S’}_-a;'y}z_@‘%a‘) f FO
with the volume constraint

Lf: (fO +¢f)2dzdf = ¥ (3.12)

and the boundary conditions

fO,-B)=f(0,B) =0, 0<6< 1
(3.13)
£o(0,2) = fo(m, z) = 0, B<z<B.J
Following Millman & Keller (1969) we adopt the expansions
(2 656) [ 0)
Ke) |=3 5| Koo |, (3.14)
n=07:

Z(e) )

where the amplitude parameter is defined as an integral weighted difference between drop shapes:

€= {fV, f—foy, (3.15)

Substituted in (3.11)—(3.13) the expansions generate a set of linear partial differential equations
with variable coefficients. Although these problems in principle can be solved sequentially they
are, except in the special case of a cylindrical drop treated in the next section, quite formidable
past the one that is first-order in €. But this first-order problem makes clear the relation between
bifurcation and neutral stability, as follows.

The first-order problem is

f® FOL( ) —8ZOfO  _2fO] [

£ K ff FO( )dzdo o = (3.16)

fO(=B,0) = fO(B,0) =0, 0<0
gl)(z,O) =f§1) (z,m) =0, —B<z<B.

where £ () istheoperator defined at (3.9) but with freplaced by f©. Whereas the eigenproblem
(3.8) describes the stability or instability of an equilibrium drop shape at rotational Bond number
2, the problem (3.16) gives the values of 2 = 2@ at which new drop shapes bifurcate from the
known shape f(z,6; X, ¥"). The bifurcation problem (3.16) is identical to (3.8) for a neutrally
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CAPTIVE ROTATING DROPS 59

stable perturbation (A; = 0). The neutrally stable perturbation #;(z, 6) to the equilibrium inter-
face f(z,0; 2, 7") is identical to the difference f® between the known and bifurcating drop
shapes. In short, the perturbation which signals neutral stability is a perturbation to a bifurcating
shape family.

This equivalence makes it possible to examine shape stability and branching of shape families
simultaneously. However, the nonlinearity of the Young-Laplace equation (2.13) and the com-
plexity of (3.8) and (8.16) require computer-aided analysis. An essentially numerical algorithm
that solves the eigenproblem is given in §5. Its working is clarified by examining the special case
for which the analysis proceeds in closed form.

4, SPECIAL CASE: CYLINDRICAL DROP

When the dimensionless volume of the captive drop is ¥~ = 2B, the perfectly cylindrical form
fO(z,0) =1, KO =3}-2% (4.1)

is an equilibrium configuration at all rotation speeds, and hence for all values of X' (thus this one
form is an entire shape family). If the spacing between the end faces is not too great, the cylindrical
shape is stable at low angular velocities but as X'increases that shape becomes neutrally stable and
another shape family branches off. Moreover, as X increases still further there are additional
points of neutral stability and bifurcation, as we establish in this section. Incidentally, Pimbley
(1976) analysed the multiple equilibrium shapes of a planar interface accelerated towards a less
dense fluid — the Rayleigh—Taylor problem — in a similar way.
Substituting (4.1) in (3.16) leads to a greatly simplified set of perturbation problems,

@ (V2+1+820) — 91 [f® 0
g = n B = 5
KO f f [ 1dzds  of [kw| ™ [o
0J-B (4.2)
FO(=B,0) = fO(B,6) =0, 0<B<n,
f(01)(z> 0) =f(01)(z, m1) =0, —-B<z<B,
] [R(1- 420 0% [T 165y -3/
K4 = ® ("B ’
Ko _ f f F*(z,0) dzdo
0J-B (4.3)

f®(—B,0) =f®(B,0), 0<0<m,
2’2)( ) f )(z n:) —-B<z<B,

and similarly for the higher-order problems. Here V2f = f,, +fy, and |Vf|? = f2+f3. The solu-
tion of (4.2) gives the points of bifurcation X' and first-order approximations £ (z, 0) to the
shape difference between the cylindrical form and the less symmetric drop form bifurcating from
it. The condition for a solution of the inhomogeneous problem (4.3),

P, 2(1—4Z0) fO*+ VP2 162D £+ 2f D flo}) — 2KP(fL, f) = 0, (4.4)

8 Vol. 297. A
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60 R.A.BROWN AND L. E. SCRIVEN

yields the first-order term X{ in the expansion (3.14):

i , {21 —4X0) fFO2 4 IVf(l) 2+ 2f(n1)f(1)0 — 2K‘1)f(1)2})
16 (fD, fy

Since X (€) & Z© +¢X®, (4.5) indicates the direction of the branching shape family at the
point of neutral stability on the energy surface (see figure 1).

There are two classes of non-cylindrical drop shapes to consider, and it is convenient to do so
separately. The first comprises the axisymmetric forms; the second comprises the forms lacking
even axial symmetry.

Zm =

(4.5)

(@) Bifurcations to axisymmetric drop shapes

When radius fis independent of azimuthal angle 6 the solution to (4.2) is simply
SO(z) = A;sinyz+ 4,[cosyz—sin (yz)/B],
K® = (4,y/2B)sinyB, y = (1+8X©)

The ratio of 4, to 4, is dictated by the boundary conditions in (3.16), which also yield for y the
characteristic equation

(4.6)

sin (yB) [cosyB —sin (yB) /yB] = 0. (4.7)
This plainly has two types of roots. These can be distinguished on the basis of symmetry about the
midplane z = 0 between the end faces, and giverise to two typesof eigenvalues and eigenfunctions:
Reflectively antisymmetric (r.a.),n = 1,2, ...

siny,, B=0, XQ =nn2/8B%—

S8(z) = 4y, ,sinnnz/B, (4.8)
K® =0, 4,,=(nB)-%
Reflectively symmetric (r.s.), n = 1,2, ..
Oy COt oy =1, a, e =7v,B, 2% =a2, /8B2 -1

f(l) (Z) = 2 n[COS Vns 2 — COS o‘ns]a (4'9)
K = A, o,sina, /2B2, A, , = (nBsin?a,,)"*

Therootsof . cotax = 1 are tabulated (Carslaw & Jaeger 1959). The constants 4, , and 4, , have
been determined from the definition of the amplitude parameter ¢, (3.15), evaluated at first
order, namely

{ = nf:[fgp(z)]zdz. (4.10)

The two types of eigenvalues are interlaced, the lowest eigenvalue belonging to an r.s. eigen-
function: see table 1. The successive eigenvalues correspond to points of neutral stability at which
new shape families bifurcate from the cylindrical form, each new family having a more wavy
profile than the one before. The r.s. and r.a. forms are distinguished by the directions in which
the respective families branch from the cylindrical form. These directions are given by ), which
from (4.5), (4.8) and (4.9) has the values

typer.a.: 2o =0, (4.11)
typer.s.: 20 =a,/(nB)}(B2-5). (4.12)
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TABLE 1. ROTATIONAL BOND NUMBERS AT WHICH FAMILIES OF REFLECTIVELY SYMMETRIC (R.S.)
AND REFLECTIVELY ANTISYMMETRIC (R.A.) SHAPE FAMILIES BIFURCATE FROM THE ROTATING
LIQUID CYLINDER

bifurcation point bifurcation point
mode for r.a.-shape for r.s.-shape
number, family, family,

n equation (4.8) equation (4.9)

1 1.237/B2—} 2.5238/B2 —

2 4.9348/B%*—} 7.4600/B2—

3 11.1033/B*— % 14.8622/B%—

4 19.7392/B2— % 24.7320/B%— %

Thus in the Xe-plane (cf. figure 1) the r.s. family cuts the cylindrical family at an angle that
depends on the (dimensionless) length of the captive drop, 2B. If B < «,,/,/5, Q) is negative and
the r.s. family branches off as shown in figure 3. On the other hand, the r.a. famlly cuts the
cylindrical family at right angles and to tell whether the r.a. family extends to higher or lower
angular velocities requires finding the curvature of the branch at the intersection, i.e. £ in the
expansion X, & 2O +eX Q) +e2Z@. This quantity is given by the condition for a solution of the
third-order problem, Wthh is mhomogcncous, of course:

(fhias [6(1—4Z0) fRfR— 24T R R — 40 S e + YR, oS ]) = 0. (4.13)

This can be rearranged to give

2(2) <f(1)[6(1 42(0))f'r£f(2) 4f(l)a +f(1) %23:2 + gf'(nle{,zz S&j Z]> (4_ 14)
24fR, T ’ '

To proceed, it is necessary to work out the r.a. solution to the second-order problem (4.3):
SiR(2) = By, 005 (Yna 2) + Boy S0 (Vg 2)
430/ 7V0a) [3€0S (Vna 2) — cOS* (Va 2) —sin(y,a 2)] — (2K + Ve 43,) /71
K@ =1(A45,0)2(3-70), vu= (14820, (4.15)
By,u = (—1)"[3B/n*n®+ (4s,,)* (1 - 2/72)],
B,,=0, n=1,2,....

Substituting these results in (4.14) yields
2@ = BA3,[—9—27y2 +Ty4 —9vy8]/96y,, n=1,2,.... (4.16)

Because this is always negative, the r.s. branches are all curved toward lower X and thus the new
shape family evolves toward lower angular velocities, as shown in figure 3.

Apart from bifurcation, the stability of cylindrical captive drops with respect to axisymmetric
disturbances is governed by an eigenproblem that is a specialization of (3.8):

2[”(‘;’,‘9)] - /\[77(2(’)0)], (4.17)

”(—B>0) =77(B’6) =0, 0<60< ,
79(2,0) = 94(z,m) =0, —-B<z<B.
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62 R.A.BROWN AND L.E.SCRIVEN

This was solved by Hardy & Coriell (1974). The eigenfunction and shape perturbation corre-
sponding to the lowest eigenvalue, A,, are called the most dangerous. For the cylindrical shape the
most dangerous perturbation is the r.s. type with n = 1, for which

A =1+8X—n2/Be, (4.18)

Thus at Z' = X{9 = n2/8B%—} the cylindrical shape loses stability with respect to the r.s.-type of
perturbation with n = 1, and remains unstable at all higher values of Z, i.e. at higher angular
velocities.

[ [ T I I
\
AN S
AY
\ i \
\ \ 7 AN
\ \ N \
I \
° \ \ \
g0 A fmmme
£ ] / /
a / / 7
/
: AN a
:
1
| | | | |
0 8 16 24

rotational Bond number, X

Ficure 3. Axisymmetric shape families predicted by bifurcation analysis. The drop volume ¥~ = 2nB is that of a
liquid cylinder between the circular end faces; the drop length is 2B = 1.

Stability in the shape families that branch from the cylindrical form is another matter. Con-
ventional analysis is limited to the neighbourhood of each bifurcation in which the expansions
(3.14) are valid. To assess their range of validity in practice takes comparison with the results of
the computer-aided analysis described below, which is not so limited in its applicability.

(b) Bifurcations to nonaxisymmetric drop shapes

When the radius f depends on azimuthal angle 0 it is necessarily periodic:

f(z,0) =f(z,2n), fo(2,0) =f4(z2rn), —-B<z<B. (4.19)

With these boundary conditions the solutions to (4.2) are again divided into two types according
to their midplane symmetry:

Reflectively antisymmetric (r.a.),n = 1,3,5,...,k =1,2, ...

2O = n2n?/32B2 + 3k -1, )
. (4.20)
S8 = cos (nnz/2B) (C,, ny,cos kO + Dy, sink6).
Reflectively Symmetric (r.s.),n=2,4,6, ..., k=1,2, ...
2O = n®n2/32B2 + k2 —},
. (4.21)
S5 (2,0) = sin (nnz/2B) (Cy, , cOS kO + Dy . sink6).
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CAPTIVE ROTATING DROPS 63

Within each type the solutions are paired, the members of a pair corresponding to one and the
same shape in two orientations that are related by rotation through 90° about the axis of drop
rotation. The two in fact can be combined linearly to give the shape any orientation about the
axis. It is convenient to remove this arbitrariness by taking the plane # = 0, n through the axis to
be a reflexion plane of the nonaxisymmetric shape. This requirement forces D; ,; and D, ;. to be
zero.

The rotational Bond numbers £ are the bifurcation points from the cylindrical family to
families of non-axisymmetric drop shapes that nearby have shape perturbations £, and £
from the cylinder. The first of these families bifurcates at X = XZ{Q = n2/32B2 and its nearby
members are given by (esmall)

f(z,0) =1+ecos(nz/2B) cosb. (4.22)

This is called the C-mode family because all members are bulged out from the axis of rotation at
* 6 = 0 and are dished in toward the axis at § = =.

The stability of the cylindrical drop shape to nonaxisymmetric shape perturbations was
studied by Fowle ¢t al. (1976), who found that the eigenproblem (8.14) has eigenfunctions and
eigenvalues

_fcos (nnz/2B) coskf, n=1,3,5, } _
Tue(2,6) = {sin (nmnz/2B) coskl, n=2,4,6,...)’ k=12, (4.23)
N = 1+ 8% + k% —n?n?/4 B2 (4.24)

The cylindrical drop first becomes neutrally stable with respect to a G-mode perturbation
at X =29 = n2/32B2 Beyond X{) the cylinder is an unstable equilibrium form; C-mode
disturbances lower the energy of the drop.

However, long cylindrical drops do not first become unstable to C-mode perturbations; they
succumb sooner to axisymmetric wavy disturbances, as Fowle ¢t al. (1976) showed. Comparison
of equations (4.18) and (4.24) shows that the drop length of cross-over is B = ¥2n: cylindrical
drops shorter than this first lose stability to C-mode perturbations; longer ones, to r.s. type axi-
symmetric disturbances with # = 1. In the limit of zero angular velocity this result is equivalent
to Rayleigh’s (1879) result for the infinitely long cylinder, in that the largest cylinder that is
stable has (dimensionless) length 2.

5. COMPUTER-AIDED ANALYSIS

We have demonstrated that three-dimensional, equilibrium meniscus shapes are well-analysed
by means of expansion in subdomain functions according to the finite element method (Orr ez al.
1975 ; Brown et al. 1980; Brown 1979). Here we go on and show how to adapt the finite element
method to the determination of families of shapes, their stability and their branching; in short, the
family tree of captive rotating drops.

(a) Drop shape

A finite element representation of the radial distance to the drop surface begins with division of
the domain of the governing equations into a convenient set of elements. For present purposes
these are segments of the interval — B < z £ B for axisymmetric shapes, and quadrilateral
elements within — B < z < B, 0 < 6 < = for fully three-dimensional shapes. The next step is to
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64 R.A.BROWN AND L. E.SCRIVEN

choose basis functions @i(z, #) for the representation, which is generally no more than an approxi-
mation because an infinite number of functions is usually required for a complete basis. Then

Np Np
J(50) = T auti(z0)+ ¥ 0,04(z0), (5.1)
where the coefficients «; and w, are to be determined. Ny, is the number of basis functions that are
non-zero along the bounding contact lines and Ny, is the total number of other basis functions.
The functions chosen here are either quadratic or cubic polynomials, each being non-zero except
in the elements surrounding a particular vertex, or node, between elements. This set of elements
constitutes a subdomain.

For axisymmetric shapes we employ Hermite cubic polynomials (Strang & Fix 1973, p. 55),
two of which are defined at each vertex z = z;:

O} = a}+biz+ciz2+d}z5 (5.2)

The constants are so chosen that @%(z) is unity and has zero slope at z;, it and its slope vanishing
at other vertices; whereas ®j(z) is zero at z; but has unit slope there and together with its slope
vanishes at other vertices:

DP(z;) = 8y, dDP(z )/dz"‘)} (5.3)

DP(z;) = 0, AP (z)/dz = 8y

(6;; is the Dirac delta). For three-dimensional menisci our choice here is the so-called reduced
quadratic basis (Strang & Fix 1973, p. 83). The vertices and points midway along the side of each
quadrilateral are designated as nodes, associated with each of which is a quadratic polynomial

Di(2,0) = ay;+ay; 2+ az; 0 + a4, 02 + a5, 2% + ag; 0% + aq; 220 + ag,; 622. (5.4)

The eight constants are so chosen that @;(z, 0) is unity at the ith node and vanishes at all other
nodes. Thus, within a given element the approximation basis consists of functions associated with
nodes on its boundary, each of these functions being non-zero only on a subdomain made up of
elements that share the node. In this sense the finite element method makes use of overlapping
subdomains.

The coeflicients in (5.1) are now the values of the radial function at the nodes. The contact line
boundary condition is incorporated into the finite element scheme by specifying the coefficients
along the boundary, i.e. w; = 1,¢ = 1,2, ..., Ng.

With a finite set of basis functions the mathematically infinite-dimensional extremum problem
(2.12) for equilibrium drop shape reduces to a finite-dimensional one, the number of dimensions
being Ny, + 1. The conditions for an equilibrium shape are simply that the partial derivatives of the
augmented effective kinetic potential (2.11) with respect to the coefficients a; be zero:

Ry(a,K) = 0# Jo;, i=1,...,Np,

[P ALV AS S P4 fo By v g popi -
f f [ I 4Zf30 2Kf¢]dzd(9 0. (5.5)

There is also an equation from the condition of fixed volume (2.7):

n (B
Rypna(a, K) = «//_lf f F2dzdo = 0. (5.6)
2)oJ-B
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CAPTIVE ROTATING DROPS 65

Substituting the finite element representation (5.1) for f(z, ) converts (5.5) and (5.6) into a set of
nonlinear, algebraic equations for the unknown coefficients a; and unknown reference pressure
K~in all, N + 1 unknowns. Once these are found, (5.1) gives the corresponding N,-dimensional
finite element approximation to the drop shape. The accuracy of this solution can be tested by
going to a higher-dimensional approximation constructed with a larger number of smaller
elements or higher-order polynomial basis functions on the same elements.

The method of choice for solving the nonlinear equation set (5.5)—(5.6) is Newton’s iteration.
Starting from an initial estimate («{?, &{?, ... 2{), K@) we determine successive iterates by

rOL"“'”’- -oc(’”. A OH | PRypu] [ R® -

1 1 Qa2 Oct; O ND | o, 1

' , A o | Ry ‘

B4y | = |0 | — . o | 5
OLX'D OC}VD aaND aal anzVD l ao‘ND R}VD ( )

rAH o |

(k+1) *) %)

-K i _K 1 L 0K0da, OKOoy | 0 ] _R&Dﬂ‘

This represents a large system of linear equations at each iteration, but the Jacobian matrix here
is not only symmetric, but also sparse, the non-zero elements clustering about the main diagonal
(because only neighbouring subdomains overlap). The matrix is easily stored in computer
memory by profile methods (Bathe & Wilson 1976) and the set of linearized equations is readily
solved by direct factorization of this Jacobian matrix (Bathe & Wilson 1976). The Newton
iteration is continued until the largest change in the correction vector, i.e. the differences
alktD — olf) and K ®+D — K®, ig less than 1078,

Because a captive drop may have more than one equilibrium shape, the nonlinear equation set
(5.5)—(5.6) may have multiple solutions. The one found by a Newton iteration, if the iteration
converges at all, depends crucially on the initial estimate (a©®, K ©®) and the shape of the energy
surface between that estimate and the solution(s). As indicated by the dashed lines in figure 1, for
each value of the parameter X there are domains of attraction about each equilibrium shape
solution, such that Newton iterations which begin with a shape within a given domain converge
to the solution in that domain. The limits of such domains no doubt relate to the lines of inflexion
on the energy surface (see figure 1). In tracing out shape families as 2'is changed, we use the last
solution to start the iteration for the next. The larger the step in X, the slower the rate of con-
vergence of the Newton iteration, until it fails to converge (underrelaxation may restore
convergence provided the step in X'is not too large). Plainly there is an optimal strategy for tracing
out a shape family. There can also be difficulty near a point of bifurcation, as discussed below.

(b) Stability and bifurcation

The stability of each equilibrium shape is calculated from the constrained eigenproblem
(3.4)-(3.5), which simultaneously reveals whether a new shape family branches from that shape.
The shape perturbations that are considered are all of those that can be represented in the same
finite element basis (5.1) as the solution, and which likewise leave the meniscus pinned to the
edges of the solid faces that hold the drop captive:

Np
7(z,0) = 3 %, Dz, 0). (5.8)
i=1
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66 R.A.BROWN AND L.E.SCRIVEN

The truncated expansions (5.1) and (5.8) reduce the Rayleigh quotient (8.4) to its analogue for
the Np-dimensional function space:

¥ Jx
A; = min 5.9
¢ erdp ¥TM &’ (5.9)
over all linear combinations of Ny-dimensional vectors that satisfy the requirements
cf’e=0, &fn,=0, j<i, (5.10)

where J is the Hessian, or energy sensitivity, matrix (J;; = 0%€ /0e; 0at;), M is the basis function
overlap matrix (M;; = (¢?, ¢7)), and c is the shape function projection vector (¢; = {f, $*)).
Both J and M are symmetric. Moreover, M, sometimes called a ‘mass matrix’ in finite element
literature, is positive definite.

The minimization problem (5.9) is readily converted to a constrained, generalized eigen-
problem: Ja,= Mz, cTa,=0, i=1,2,.. 0N, (5.11)
The eigenvalues are necessarily real. It is convenient to order them from the smallest to the
largest. Negative eigenvalues signal instability with respect to shape perturbations described by
the corresponding eigenvector &,. For (5.8) to be a good approximation to an eigenvector that
corresponds to an irregular shape, the dimension of the finite basis, Nj,, may have to be quite
large (250 or more). Established techniques of matrix transformation for solving (5.11) (see, for
example, Moler & Stewart 1973) destroy matrix sparsity and therefore require storage of both
J and M. Few computers, including the CDC Cyber 74 available to us, have a large enough
central memory, and so iterative methods must be used.

For (5.11) we prefer the block-Lanczos method recently developed by Golub & Underwood
(1977) and adapted as explained here. For the simple eigenproblem

Az, = p,%, i=1,2,..,Np, (5.12)

where A is positive definite and symmetric, the method computes the lowest several eigenvalues
and their eigenvectors. In each iteration the only operation involving A is multiplication by a
vector, and thus any sparsity of A is preserved. The rate at which the method converges on an
eigenvalue depends on the initial estimate of the eigenvector, on the spacings of the eigenvalues,
and on their spread |Ay, —A,| (Underwood 1975). The spread is large for (5.11), from large
positive eigenvalues corresponding to disturbances stabilized by surface tension, to a small
positive or even negative value for the most dangerous shape disturbance, i.e. the first to give rise
to instability as X' is varied.
To convert (5.11) to the standard form (5.12) we transform it by means of the relations

J=J4sM=LLT, s>o, (5.13)
1 =A+s 5> 0, (5.14)

where s is chosen large enough that Tis positive (Aieﬁnite, and where L is the lower triangular
matrix resulting from a Cholesky factorization of J (Wilkinson 1965). The result is

L (-M)L~"y; = p;y,, d'y;=0, i=1,2, "‘:ND>\
(5.15)
v, =L"%, d=L-, d’d-=1. J
The eigenvalues are bounded:
—1/(A1+58) < py < —1/(Anp +5). (5.16)
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The orthogonality constraint d”y, = 0issatisfied by making use of the projection operator onto
the subspace of volume-conserving perturbations, as outlined by Golub (1973):

P =1-dd7, (5.17)
where I is the identity matrix. The problem (5.15) is transformed to
Az, =[PLY(-M)LTP)3; = p;%, t=1,2,...,Np, (5.18)

where 2, is any Np-dimensional vector. The eigenvectors here and in (5.15) are related by y; = Pz,
and the eigenvalues are identical. The matrix A is positive definite and symmetric and its eigen-
values and eigenvectors are found by the block-Lanczos method. We require the eigenpair to
satisfy the convergence criterion || Az; — p; %;|, < 10-% where |- | ;isthe Np-dimensional Euclidean
norm (Wilkinson 1965, p. 57).

The eigenvectors and eigenvalues of the original form of the stability problem (5.9) are
recovered from %, =LTPz;, A =-—s+1/u,. (5.19)
If A in (5.18) were actually formed it would not be sparse. However, this matrix is not stored in
the computer’s memory. Just the sparse matrices L and M are stored, and the product of A with
any vector is constructed by operations involving only solution of triangular systems of equations
and matrix-vector multiplications. Profile storage methods (Bathe & Wilson 1976) prove
advantageous.

The eigenvectors #; are finite element approximations to the normal modes of the drop shape,
from which come J and c; the eigenvalues A; if positive are related (through inertial quantities) to
the natural oscillation frequencies in the respective modes. Stability is of course governed by the
sign of the lowest eigenvalue A;( = p7* —s) which, if negative, indicates instability. On the other
hand, as the parameter 2'is varied, any point at which any eigenvalue A; passes through zero is a
bifurcation point of the shape family from which come J and ¢. Moreover, the eigenvector «;
describes the shape difference between the original form and the one bifurcating from it, just as at
(3.10), and so a good estimate for a shape nearby on the new branch is

F(0) = f0(z,0) +6 3 7, 04(z,0), (5.20)

where #;; are the components of &;, and ¢ is the amplitude parameter defined by (3.15). Whether
or not this first estimate actually falls in the domain of attraction of a shape on the new branch
depends on the original shape f©@ selected — in particular, how close it is to the bifurcation point —
and on the amplitude parameter ¢ chosen.

To make the Newton iteration jump over from the original family to the new one near a bifur-
cation point, we launch iterations from initial estimates given by (5.20) in which ¢ is made succes-
sively larger. Invariably we find that when ¢ is small the iteration converges back to f© but that
when ¢ is somewhat larger the iteration if it converges at all does so to a shape on the new branch.
Thus it appears that the domains of attraction near a bifurcation point are qualitatively as figure
1 suggests.

One way of determining whether the new shape family exists at higher or lower values of the
parameter X'is with a higher-order perturbation analysis like thatin §4. But such an analysisis not
easily incorporated in the algorithm we are describing here, and so we simply test for new shape
families by starting Newton iterations with (5.20) asjust outlined, but with finite element solutions

S© at rotational Bond numbers X slightly above and slightly below a bifurcation point value.

9 Vol. 297. A
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68 R.A.BROWN AND L.E.SCRIVEN

All the analysis in this section is codified in a computational algorithm for determining equi-
librium dropshapes, theirstability, and bifurcation of shape families. The algorithm issummarized
in figure 4. There are many procedures for tracing out an entire family tree. We usually choose to
trace out the new branch from a bifurcation before returning to continue along the original trunk
or the older branch. Incidentally, we have not investigated the possibility that additional families
of three-dimensional captive drop shapes exist which are not in the tree that is delineated in the
next section.

d

Given X, calculate drop Given X, calculate drop
shape f(z, 8; 2). Use the shape in bifurcating shape
shape at previous X as family. Use (5.20) as
first approximation, first approximation.

Calculate the lowest several
eigenvalues of (5.11)
ML

l

H T
H 1 IfA,<0
Ira, >0, ! Determine 1 '~ &2
1(z.8;2) | stability 1 f(z0:2)
is stable. | : : unstable.
i 1

|

Check for
bifurcation point.

If A;# 0, continue
calculating shapes in
current family.

=0, jump’to
a shape in the
bifurcating family.

FicURE 4. Flow chart of finite element algorithm for calculating shape and stability of rotating captive drops.

6. REsuLTs

The algorithm was tested by using it to find axisymmetric drop shapes and their stability with
respect to axisymmetric disturbances. The basis in both instances was usually 82-dimensional,
consisting of Hermite cubic functions on 40 elements spanning the interval — B < z < B. The
results for axisymmetric drops having the volume of a cylinder, i.e. ¥” = 2nB, are plotted in
figure 5, which shows the reflectively symmetric (r.a.) families for n = 1 and n = 2, the reflec-
tively antisymmetric (r.s.) family for » = 1, and the trunk family consisting of the cylindrical drop
at all speeds of rotation. The three bifurcation points were estimated by interpolating the eigen-
value results and each is within 0.59%, of the corresponding value computed from analytical
formulas (4.8) and (4.9). The sample shapes on the branch (r.a., n = 1) in figure 6 show profiles
that grow more exaggerated as X' is decreased more and more from the bifurcation value. Ulti-
mately the slope df/dz becomes infinite at some point on the profile and the shape representation
r = f(z) fails.
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Only one segment in figure 5 consists of shapes stable to axisymmetric disturbances. The results
agree with those of §4 in that the cylindrical drop first becomes unstable to an axisymmetric dis-
turbance, namely r.a., n = 1, at 2 = X{Q = n2/8B2—1, the value that Hardy & Coriell (1974)
found. The entire family of (r.a., n = 1)-shapes is unstable to (r.a., n = 1)-disturbances which,
though they have roughly the same form as the equilibrium shapes, are not perturbations from one
to another shape in the family. Except for the cylindrical shape at £ < Z{2, all the shape families
we investigated with the finite element algorithm — through to » = 3 shapes — are unstable to
(r.a., n = 1) disturbances.
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F1cure 5. Axisymmetric shape families calculated by finite element analysis. The drop volume is 218 and the
length is 2B = 1.
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Figure 6. Sample profiles (r.a., n = 1) of axisymmetric captive drops of volume and length ¥~ = 2B and
2B = 1, respectively. 2 is the rotational Bond number.
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70 R.A.BROWN AND L. E.SCRIVEN

(a) Drops having the volume of a cylinder

Fully three-dimensional shapes and shape perturbations were investigated with 121- and 225-
dimensional bases consisting of reduced quadratic finite elements, eight of them in the z-interval
and four or eight around the f-coordinate. The accuracy of the finite element representation of
drop shape depends on the departure of the shape from the cylinder and on the dimensionality of

TaBLE 2. COMPARISON OF EIGENVALUES CALCULATED BY FINITE ELEMENT ANALYSIS OF THE
STABILITY OF A ROTATING CAPTIVE CYLINDER WITH THOSE GIVEN BY (4.24). RESULTS FROM
BOTH 4 X 8 AND 8 X 8 ELEMENT MESHES ARE SHOWN

finite element
calculation with

finite element
calculation with

4 x 8 mesh 8 X 8 mesh
analytical ~ —A —_— — A
values % %
cross-section equation relative relative
of eigenfunction A (4.20) value error value error
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The cylinder is an equilibrium shape at all angular velocities.

Ficure 7. Shape families of rotating captive drops of volume and length ¥~ = 2aB and 2B = 1, respectively.
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72 R.A.BROWN AND L. E.SCRIVEN

the basis, besides the convergence criterion chosen for the Newton iteration. The accuracy of the
finite element solution of the eigenproblem for shape stability also depends on the dimensionality
of the basis as well as the convergence criterion adopted from the block-Lanczos method. The
accuracies achieved can be inferred from comparisons of the resulting eigenvalues for cylindrical
drops with those computed from closed-form formula (4.24). Table 2 is representative. The eigen-
function planforms shown are cross-sections at z = 0, as given by (4.23). The 8 x 4-element
arrangement represents well the most highly symmetric modes but the 8 x 8-element arrangement
is needed to approximate £ = 3 and £ = 4 as well. Thus, among the four lowest eigenvalues, A,
and A,, are calculated quite accurately with the smaller basis but A,5 and A,4 require the larger
basis to obtain accuracy better than 0.4 %,.

The first and second three-dimensional shape families that branch from the cylindrical family
do so at lower values of the rotational Bond number than does the (r.a., n = 1)-family, as depicted
in figure 7, which is for B = 0.5, i.e. a captive drop as long as its radius. As first predicted by
Fowle ¢t al. (1976) — see §4 () — the cylindrical drop loses stability with respect to a C-shaped
disturbance. At the point of neutral stability we find bifurcation to a family of C-shaped drops,
members of which are shown in figure 8. By interpolation the bifurcation is at X' = 2@ ~ 1.22;
comparison with the value Z{Q = 1.23 computed from analytical formula (4.20) gives another
indication of the accuracy of the finite element algorithm as implemented in this study. At a
higher rotational Bond number, by interpolation 2 = Z'{) ~ 1.62, which is to be compared with
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the value 1.62 from (4.20), there is bifurcation to a family of two-lobe drops, members of which
are also shown in figure 8.

The shapes in the C-shaped and two-lobe families are all unstable with respect to C-shaped
disturbances where B = 0.5and ¥~ = 2nB. We found no stable three-dimensional drop shape at
rotational speeds greater than 2. |
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Ficure 11. Critical value of rotational Bond number Ficure 12. Axisymmetric, C-shaped, and two-lobed
for onset of instability of axisymmetric rotating families of obese rotating captive drops. ¥~ =
captive drops of length 2B = 2, as a function of 24nB and B = 3. Stable ( ) and unstable

the drop volume. (==2).

(b) Drops not having the volume of a cylinder

When drop volume differs from ¥~ = 2nB the bifurcation diagram, or family tree, changes in
character. Figure 9 show the families of fat captive drops when ¥ = 2.4nB and B = 0.5. Axi-
symmetric shapes do not exist for all rotational Bond numbers; they come to an end at X' ~ 4.61.
Instability is again first caused by C-mode perturbation and this happens at 2’ ~ 0.819, beyond
which the axisymmetric forms are unstable.

An axisymmetric shape is stable to the highest rate of rotation if it is slightly skinny, at least
when B = 0.5. The critical value of rotational Bond number 2 for onset of instability is plotted
in figure 10 as a function of drop volume when B = 0.5, and it can be seen that ¥ ~ 0.95n.B has
the greatest stability. Instability, when it does occur, is always with respect to a C-mode when
B =0.5. |

This is not so when B = 1, i.e. for captive drops twice as long as their end radii. The critical
value of 2 for onset of instability is plotted in figure 11 as a function of drop volume when B = 1.
Instability is with respect to a C-mode down to ¥~ ~ 0.84nB. Axisymmetric drops with smaller
volume not only lose stability, but also fail to exist beyond their critical value of 2, i.e. these
axisymmetric shape families have a turning point there. Just below the critical value there are
two axisymmetric shapes at a given rotational Bond number. The shapes in the limb of the
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axisymmetric family that ascends to the turning point are stable, whereas those in the limb beyond
the turning point are unstable with respect to an axisymmetric (r.a., # = 1) perturbation. As the
drop volume is decreased the critical value of X' at which the axisymmetric shapes are lost also
decreases, until a limit in volume is reached where no static axisymmetric shape is possible even
when the drop is not rotating. The shapes of axisymmetric captive drops that are not rotating are
shapes of constant mean curvature and their profiles are sections of either cylinders, spheres,
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catenoids, nodoids, or unduloids. Gillette & Dyson (1971) studied the stability of static captive
drops.

The antithesis of a very skinny captive drop is an obese drop whose cross-sectional radius —
measured when the drop is static and axisymmetric - is much larger than the radius of the solid
faces. The axisymmetric, C-shaped, and two-lobed shape families for an obese drop with
¥ = 24nB and B = 3 are shown in figure 12. The drop is almost spherical at rest, but as its
angular velocity is increased the drop expands in the plane perpendicular to the axis of rotation.
As shown by the sample shapes in figure 13, at moderate rotation rates the axisymmetric drops
become so deformed that only small liquid throats connect the body of the drop to the solid faces.
At even higher rotation rates the diameter of these throats is smaller than the diameter of the
faces. At 2 = 0.0149 the axisymmetric shape family turns back to lower values of rotational Bond
number. No equilibrium shapes are found at higher rotation rates.

Drops in the axisymmetric shape family become unstable long before the turning point. The
obese captive drop with X' ~ 0.000 31 is neutrally stable to a C-shaped perturbation. All axisym-
metric shapes at higher 2 are unstable to a C-shaped perturbation. At Z ~ 0.000623 a two-lobed
perturbation causes neutral stability of the axisymmetric shape; shapes with higher rotational
Bond numbers are unstable to both C-shaped and two-lobed perturbations.

The axisymmetric shapes that are neutrally stable to C-shaped and two-lobed perturbations
mark bifurcation points to nonaxisymmetric shape families whose members are C-shaped and
two-lobed, respectively. Shapes in these families were calculated using the finite element algo-
rithm and sample drop shapes are shown in figure 13.

The C-shaped obese drops bifurcate supercritically from the axisymmetric shapes, i.e., the
C-shapes exist for rotational Bond numbers greater than the bifurcation value X' ~ 0.00031. They
grow more deformed as the angular velocity increases (figures 13¢—g ) until past £ ~ 0.000623 no
equilibrium C-shape can be found. Here the family of C-shaped drops passes through a turning
point with respect to rotational Bond number. The shape at the turning point is neutrally stable
to a C-shaped perturbation, and past the turning point the C-shapes are unstable to a C-shaped
perturbation.

The two-lobed obese drops bifurcate subcritically from the axisymmetric shapes, i.e. the two-
lobed shapes exist at X' lower than the bifurcation value X' ~ 0.000623. As shown by the sample
shapes in figures 13 (i) and (), the lobes of the drop elongate as the angular velocity of the drop is
decreased. The eigenproblem (5.18) for any two-lobed shape has a negative eigenvalue for a C-
shaped eigenfunction; thus all the two-lobed shapes are unstable to a C-shaped perturbation.

7. DiscussioN

According to the foregoing results, an axisymmetric captive drop with fixed contact lines, if it is
stable at rest, remains in stable gyrostatic equilibrium at angular velocities of rotation up to a
critical value. At this critical angular velocity the axisymmetric drop becomes unstable, and there
is no stable shape to which it can evolve through a progression of equilibrium forms, except in one
case, which was hitherto unsuspected. This is the case of certain drops of equatorial radius large
compared with the radius of the support — drops we call obese. Atits critical angular velocity an
obese drop loses stability to a fully three-dimensional, C-shaped form that is stable and evolves
into further, stable C-shaped forms at higher angular velocities up to some limit. Hence the C-
shape should be observable in experiments.
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Axisymmetric captive drops, whether cylindrical, depleted and skinny, or swollen and obese,
are found to lose stability in one of two ways: the initially stable family of axisymmetric shapes
either bifurcates to a new family whose members may or may not have axial symmetry; or it
reaches a rotation rate beyond which there are simply no equilibrium shapes infinitesimally
different from the last member. Both possibilities have also been predicted in other cases, for
example the rupturing of a layer of insulating liquid separating conducting fluids at different
electrostatic potentials (Michael ¢t al. 1974, 1975).

The results for the perfectly cylindrical drop presented in §4 are singular in an important sense.
They predict an endless sequence of shape families bifurcating from the cylinder family (see
figure 3). However, if the volume of liquid deviates at all from that of a cylinder, there is a rotation
rate beyond which axisymmetric shapes do not exist (see figure 13). Gravity in the axial direction
may be expected to have this same effect on the equilibrium shapes of axisymmetric drops. More-
over, because gravity disrupts the symmetry of the drop shape about the equatorial plane, it may
cause the supercritical and subcritical bifurcations described here to split into non-intersecting
shape families; such bifurcations are called ‘imperfect’ by Thompson & Hunt (1973). An
investigation of these possibilities will be the subject of another communication.

Plateau’s (1863) laboratory investigation was the first to shed light on the intricacies of rotating
drops. In his experiments a fat drop is immersed in a second, immiscible liquid of lower viscosity
and virtually the same density. The drop is penetrated by a slender cylindrical shaft on which is
mounted a small disk that is totally surrounded by the drop. Although the drop is held captive on
the shaft by surface tension, its wetting lines may be able to move, depending on the wetting pro-
perties of the shaft. Thus under some conditions the contact lines may slide freely enough along the
shaft to maintain a definite contact angle, rather than remain pinned, which is the boundary
condition adopted in the foregoing analysis.

Plateau’s experiments were recently repeated by Tagg & Wang (1978), who confirmed obser-
vations made over a century ago. When the shaft with its disk is rapidly spun up from rest to a
steady angular velocity that is not too high, the drop takes an axisymmetric form that is the more
flattened the greater the steady velocity. However, with successively higher terminal velocities,
the drop assumes C-shapes and then two-lobed shapes, in a sequence like that predicted in §6 for
the obese captive drop in gyrostatic equilibrium. Whereas the axisymmetric shapes and C-shapes
in that sequence are stable, the two-lobed shapes are not. Thus two-lobed shapes ought to be seen only
as transients.

Pleateau’s experiments depart greatly from the ideal of a rigidly rotating liquid drop (Gifford
& Scriven 1980). The surrounding immiscible liquid exerts viscous drag on the drop and keeps
the liquid within from achieving hydrostatic equilibrium. The flows within and without the drop
cause viscous pressure and viscous normal stress on the meniscus that affect its shape and stability.
The effects of flows generated during the spin-up can be stronger. Thus more complex, transient
drop shapes have been seen (Plateau 1863 ; Tagg & Wang 1978), including a short-lived toroidal
ring of liquid separated from the remainder of the liquid that adheres to the shaft and disk. Some
qualitative agreement between experiments like Plateau’s and the theory of captive rotating
drops in gyrostatic equilibrium is the best that can be hoped for.

Not even this sort of agreement is always achieved. Carruthers & Grasso (1972 4, b) studied the
stability of captive rotating liquid cylinders in an experiment like Plateau’s. They found that
even short liquid cylinders rotating in an outer liquid of equal density become unstable to a wavy,
axisymmetric (r.a., » = 2) mode of instability, not the C-mode predicted in §4 (see especially

10-2
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figure 7) and observed in small-scale, Earthbound experiments in which air is the fluid surround-
ing the rotating liquid (Fowle et al. 1976). Evidently viscous drag between the inner and outer
liquids in the experiments of Carruthers & Grasso stabilized the non-gyrostatic states against
asymmetric C-mode and two-lobed perturbations until they became unstable to (r.a. n = 2)
axisymmetric perturbations.

There is an important aspect of the theoretical results in § 6 which has no parallel in previous
analyses of equilibrium shapes of menisci. The axisymmetric, obese captive drops in losing
stability to the fully three-dimensional, stable C-shaped drops obey the often-quoted ‘principle
of exchange of stabilities’. This rule holds that only if the first shape family that bifurcates from the
axisymmetric shapes does so supercritically (i.e. to values of the rotational Bond number, X,
higher than the value at the bifurcation point), are the shapes of the new family stable and those
of the axisymmetric family unstable beyond, i.e. at the higher values of 2. And indeed, the
axisymmetric, obese captive drops do exchange stability in this way with the C-shaped captive
drops.

An exchange of stability is known to take place between the family of spheroidal and the bi-
furcating family of ellipsoidal liquid masses that rotate rigidly and are held together by self-
gravitation rather than surface tension (cf. Lyttleton; 1953 Chandrasekhar 1969). Plateau (1863),
Appell (1932) and Chandrasekhar (1965) have speculated that entirely free liquid drops which
are held together by surface tension and are rotating rigidly may have ellipsoid-like, stable
equilibrium shapes that bifurcated from the family of axisymmetric shapes. It was on the basis of
such a hypothesis that Plateau (1863) designed his experiments on centimetre-sized, nearly
neutrally-buoyant liquid drops as models of much larger-scale, self-gravitating liquid masses.
The shapes, stability and bifurcation of freely rotating liquid drops held together by surface
tension we have analysed by the finite element algorithm presented in §5. The results are the
subject of another communication (Brown & Scriven 1979).

This research was supported by the Fund for Independent Research of the U.S. National
Aeronautics and Space Administration, the Graduate School of the University of Minnesota, and
the University of Minnesota Computer Center. The authors are grateful to P. Concus and G. H.
Golub for valuable discussion and suggestions of methods, and to S. R. Coriell, J. C. C. Nitsche,
and F. M. Orr Jr., for particularly stimulating discussions.
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